Периодическая дробь - Definition. Was ist Периодическая дробь
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Периодическая дробь - definition

Периодическая дробь; Десятичные дроби; Бесконечная десятичная дробь; Бесконечная дробь; Периодические десятичные дроби; Период (дробь); Периодическая десятичная дробь; Преобразование периодической десятичной дроби в обыкновенную; Десятичная запись

ПЕРИОДИЧЕСКАЯ ДРОБЬ         
бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр (период), напр. 0,373737... - чисто периодическая дробь или 0,253737... - смешанная периодическая дробь.
Периодическая дробь         

бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр. Например, 1,3181818...; короче эту дробь записывают так: 1,3(18), то есть помещают период в скобки (и говорят: "18 в периоде"). П. д. называется чистой, если период начинается сразу после запятой, например 2(71) = 2,7171..., и смешанной, если после запятой имеются цифры, предшествующие периоду, например 1,3(18). Роль П. д. в арифметике обусловлена тем, что при представлении рациональных чисел, то есть обыкновенных (простых) дробей, десятичными дробями, всегда получаются либо конечные, либо периодические дроби. Точнее: конечная десятичная дробь получается в том случае, когда знаменатель несократимой простой дроби не содержит других простых множителей, кроме 2 и 5; во всех других случаях получается П. д., и притом чистая, если знаменатель данной несократимой дроби вовсе не содержит множителей 2 и 5, и смешанная, если хотя бы один из этих множителей содержится в знаменателе. Всякая П. д. может быть обращена в простую дробь (то есть она равна некоторому рациональному числу). Чистая П. д. равна простой дроби, числителем которой служит период, а знаменатель изображается цифрой 9, написанной столько раз, сколько цифр в периоде; при обращении в простую дробь смешанной П. д. числителем служит разность между числом, изображаемым цифрами, предшествующими второму периоду, и числом, изображаемым цифрами, предшествующими первому периоду; для составления знаменателя надо написать цифру 9 столько раз, сколько цифр в периоде, и приписать справа столько нулей, сколько цифр до периода. Эти правила предполагают, что данная П. д. правильная, то есть не содержит целых единиц; в противном случае целая часть учитывается особо.

Примеры:

Известны также правила определения длины периода П. д., соответствующей данной обыкновенной дроби. Например, для дроби a/p, где р - простое число и 1 ≤ ap - 1, длина периода является делителем р - 1. Так, для известных приближений к числу (см. Пи) 22/7 и 355/113 период равен 6 и 112 соответственно.

БЕСКОНЕЧНАЯ ДЕСЯТИЧНАЯ ДРОБЬ         
десятичная дробь, в записи которой после запятой содержится бесконечное количество цифр.

Wikipedia

Десятичная дробь

Десяти́чная дробь — разновидность дроби, которая представляет собой способ представления действительных чисел в виде

± d m d 1 d 0 , d 1 d 2 {\displaystyle \pm d_{m}\ldots d_{1}d_{0}{,}d_{-1}d_{-2}\ldots }

где

± {\displaystyle \pm }  — знак дроби: либо + {\displaystyle +} , либо {\displaystyle -} ,
, {\displaystyle ,}  — десятичная запятая, служащая разделителем между целой и дробной частью числа (стандарт стран СНГ),
d k {\displaystyle d_{k}}  — десятичные цифры. Причём последовательность цифр до запятой (слева от неё) конечна (как минимум одна цифра), а после запятой (справа от неё) — может быть как конечной (в частности, цифры после запятой могут вообще отсутствовать), так и бесконечной.

Примеры:

  • 123 , 45 {\displaystyle 123{,}45} (конечная десятичная дробь)
  • Представление числа π {\displaystyle \pi } в виде бесконечной десятичной дроби: 3,141 5926535897... {\displaystyle 3{,}1415926535897...}

Значением десятичной дроби ± d m d 1 d 0 , d 1 d 2 {\displaystyle \pm d_{m}\ldots d_{1}d_{0},d_{-1}d_{-2}\ldots } является действительное число

± ( d m 10 m + + d 1 10 1 + d 0 10 0 + d 1 10 1 + d 2 10 2 + ) , {\displaystyle \pm \left(d_{m}\cdot 10^{m}+\ldots +d_{1}\cdot 10^{1}+d_{0}\cdot 10^{0}+d_{-1}\cdot 10^{-1}+d_{-2}\cdot 10^{-2}+\ldots \right),}

равное сумме конечного или бесконечного числа слагаемых.

Представление действительных чисел с помощью десятичных дробей является обобщением записи целых чисел в десятичной системе счисления. В представлении целого числа в виде десятичной дроби отсутствуют цифры после запятой, и таким образом, это представление имеет вид

± d m d 1 d 0 , {\displaystyle \pm d_{m}\ldots d_{1}d_{0},}

что совпадает с записью этого числа в десятичной системе счисления.

Was ist ПЕРИОДИЧЕСКАЯ ДРОБЬ - Definition